2,607 research outputs found

    Effects of striped skunk removal on duck nest success in the Mission Valley Montana

    Get PDF

    A Radiographic Analysis of Variance in Lower Incisor Enamel Thickness

    Get PDF
    The purpose of this study was to help predict the enamel thickness of mandibular incisors. At least two direct digital periapical radiographs were made for each of the 80 subjects. Radiographs were scaled to control for magnification errors using dental study models and computer software. Mesiodistal incisor width and mesial and distal enamel thicknesses were measured. Lateral incisors were determined to be wider than central incisors and distal enamel thicknesses were larger than mesial enamel thicknesses on average. The African American group demonstrated wider incisors and enamel thicknesses than the Caucasian group on average. Enamel thickness positively correlated with tooth width for all incisors. No statistically significant differences were detected between male and female groups. Some conclusions relating to enamel thickness can be made based on race, incisor position, and incisor width, but correlations were not considered strong enough to accurately determine enamel width, without the aid of radiographs

    Epipodial tentacle gene expression and predetermined resilience to summer mortality in the commercially important greenlip abalone, Haliotis laevigata

    Get PDF
    "Summer mortality" is a phenomenon that occurs during warm water temperature spikes that results in the mass mortality of many ecologically and economically important mollusks such as abalone. This study aimed to determine whether the baseline gene expression of abalone before a laboratory-induced summer mortality event was associated with resilience to summer mortality. Tentacle transcriptomes of 35 greenlip abalone (Haliotis laevigata) were sequenced prior to the animals being exposed to an increase in water temperature — simulating conditions which have previously resulted in summer mortality. Abalone derived from three source locations with different environmental conditions were categorized as susceptible or resistant to summer mortality depending on whether they died or survived after the water temperature was increased. We detected two genes showing significantly higher expression in resilient abalone relative to susceptible abalone prior to the laboratory-induced summer mortality event. One of these genes was annotated through the NCBI non-redundant protein database using BLASTX to an anemone (Exaiptasia pallida) Transposon Ty3-G Gag Pol polyprotein. Distinct gene expression signatures were also found between resilient and susceptible abalone depending on the population origin, which may suggest divergence in local adaptation mechanisms for resilience. Many of these genes have been suggested to be involved in antioxidant and immune-related functions. The identification of these genes and their functional roles have enhanced our understanding of processes that may contribute to summer mortality in abalone. Our study supports the hypothesis that prestress gene expression signatures are indicative of the likelihood of summer mortality

    Types of boredom: an experience sampling approach

    Get PDF
    The present study investigated different types of boredom as proposed in a four-categorical conceptual model by Goetz and Frenzel (2006; doi:10.1026/0049-8637.38.4.149). In this model, four types of boredom are differentiated based on degrees of valence and arousal: indifferent, calibrating, searching, and reactant boredom. In two studies (Study 1: university students, N = 63, mean age 24.08 years, 66 % female; Study 2: high school students, grade 11, N = 80, mean age 17.05 years, 58 % female), real-time data were obtained via the experience-sampling method (personal digital assistants, randomized signals). Boredom experiences (N = 1,103/1,432 in Studies 1/2) were analyzed with respect to the dimensions of valence and arousal using multilevel latent profile analyses. Supporting the internal validity of the proposed boredom types, our results are in line with the assumed four types of boredom but suggest an additional, fifth type, referred to as “apathetic boredom.” The present findings further support the external validity of the five boredom types in showing differential relations between the boredom types and other affective states as well as frequency of situational occurrence (achievement contexts vs. non-achievement contexts). Methodological implications as well as directions for future research are discussed

    Persuasive health educational materials for colorectal cancer screening

    Get PDF
    This paper describes an effort to design and evaluate persuasive educational materials for colorectal cancer (CRC) screening. Although CRC screening is highly effective, screening rates in the US remain low. Educational materials represent one strategy for educating patients about screening options and increasing openness to screening. We developed a one-page brochure, leveraging factual information from the Centers for Disease Control and Prevention (CDC) and national guidelines, and strategies for persuasion from the human factors and behavioral economics literatures. We evaluated the resulting brochure with adults over the age of 50. Findings suggest that the educational brochure increases knowledge of CRC and screening options, and increases openness to screening. Furthermore, no significant difference was found between the new one-page brochure and an existing multi-page Screen for Life brochure recommended by the CDC. We interpret these findings as indication that the more practical and potentially less intimidating one-page brochure is as effective as the existing multi-page Screen for Life brochure

    Exploring the utility of human DNA methylation arrays for profiling mouse genomic DNA

    Get PDF
    AbstractIllumina Infinium Human Methylation (HM) BeadChips are widely used for measuring genome-scale DNA methylation, particularly in relation to epigenome-wide association studies (EWAS) studies. The methylation profile of human samples can be assessed accurately and reproducibly using the HM27 BeadChip (27,578 CpG sites) or its successor, the HM450 BeadChip (482,421 CpG sites). To date no mouse equivalent has been developed, greatly hindering the application of this methodology to the wide range of valuable murine models of disease and development currently in existence. We found 1308 and 13,715 probes from HM27 and HM450 BeadChip respectively, uniquely matched the bisulfite converted reference mouse genome (mm9). We demonstrate reproducible measurements of DNA methylation at these probes in a range of mouse tissue samples and in a murine cell line model of acute myeloid leukaemia. In the absence of a mouse counterpart, the Infinium Human Methylation BeadChip arrays have utility for methylation profiling in non-human species

    Wireless Tissue Palpation: head characterization to improve tumor detection in soft tissue

    Get PDF
    Abstract For surgeons performing open procedures, the sense of touch is a valuable tool to directly access buried structures and organs, to identify their margins, detect tumors, and prevent undesired cuts. Minimally invasive surgical procedures provide great benefits for patients; however, they hinder the surgeon's ability to directly manipulate the tissue. In our previous work, we developed a Wireless Palpation Probe (WPP) to restore tissue palpation in Minimally Invasive Surgery (MIS) by creating a real-time stiffness distribution map of the target tissue. The WPP takes advantage of a field-based magnetic localization algorithm to measure its position, orientation, and tissue indentation depth, in addition to a barometric sensor measuring indentation tissue pressure. However, deformations of both the tissue and the silicone material used to cover the pressure sensors introduce detrimental nonlinearities in sensor measurements. In this work, we calibrated and characterized different diameter WPP heads with a new design allowing exchangeability and disposability of the probe head. Benchtop trials showed that this method can effectively reduce error in sensor pressure measurements up to 5 % with respect to the reference sensor. Furthermore, we studied the effect of the head diameter on the devices spatial resolution in detecting tumor simulators embedded into silicone phantoms. Overall, the results showed a tumor detection rate over 90 %, independent of the head diameter, when an indentation depth of at 5 mm is applied on the tissue simulator

    ARTICLE IN PRESS G Model

    Get PDF
    a b s t r a c t For surgeons performing open procedures, the sense of touch is a valuable tool to directly access buried structures and organs, to identify their margins, detect tumors, and prevent undesired cuts. Minimally invasive surgical procedures provide great benefits for patients; however, they hinder the surgeon's ability to directly manipulate the tissue. In our previous work, we developed a Wireless Palpation Probe (WPP) to restore tissue palpation in Minimally Invasive Surgery (MIS) by creating a real-time stiffness distribution map of the target tissue. The WPP takes advantage of a field-based magnetic localization algorithm to measure its position, orientation, and tissue indentation depth, in addition to a barometric sensor measuring indentation tissue pressure. However, deformations of both the tissue and the silicone material used to cover the pressure sensors introduce detrimental nonlinearities in sensor measurements. In this work, we calibrated and characterized different diameter WPP heads with a new design allowing exchangeability and disposability of the probe head. Benchtop trials showed that this method can effectively reduce error in sensor pressure measurements up to 5% with respect to the reference sensor. Furthermore, we studied the effect of the head diameter on the device's spatial resolution in detecting tumor simulators embedded into silicone phantoms. Overall, the results showed a tumor detection rate over 90%, independent of the head diameter, when an indentation depth of 5 mm is applied on the tissue simulator

    Outlier SNPs enable food traceability of the southern rock lobster, Jasus edwardsii

    Get PDF
    Recent advances in next-generation sequencing have enhanced the resolution of population genetic studies of non-model organisms through increased marker generation and sample throughput. Using double digest restriction site-associated DNA sequencing (ddRADseq), we investigated the population structure of the commercially important southern rock lobster, Jasus edwardsii, in Australia and New Zealand with the aim of identifying a panel of SNP markers that could be used to trace country of origin. Four ddRADseq libraries comprising a total of 88 individuals were sequenced on the Illumina MiSeq platform, and demultiplexed reads were used to create a reference catalog of loci. Individual reads were then mapped to the reference catalog, and variant calling was performed. We have characterized two single-nucleotide polymorphism (SNP) panels comprised in total of 656 SNPs. The first panel contained 535 neutral SNPs and the second, 121 outlier SNPs that were characteristic of being putatively under selection. Both neutral and outlier SNP panels showed significant differentiation between the two countries, with the outlier loci demonstrating much larger F(ST) values (F(ST) outlier SNP panel = 0.134, P < 0.0001; F(ST) neutral SNP panel = 0.022, P < 0.0001). Assignment tests performed with the outlier SNP panel allocated 100 % of the individuals to country of origin, demonstrating the usefulness of these markers for food traceability of J. edwardsii
    • …
    corecore